ML hilft, Anomalien zu erkennen
Nach wie vor verlassen sich viele Sicherheitsteams bei der Erkennung von Bedrohungen auf statische Signaturen. Dabei bauen sie entweder auf ein Intrusion Detection System (IDS) zur Netzwerkanalyse oder auf statische Verhaltenserkennungen auf der Grundlage von Endpunktprotokollen. Doch mit immer mehr Daten wird es schwierig, den Überblick zu behalten, und alle Quellen und Angriffsmuster mit individuellen Regeln abzudecken. Um diese Herausforderungen zu meistern, helfen laut Exeon Algorithmen des maschinellen Lernens (ML) dabei, die Perspektive bei der Erkennungsentwicklung zu wechseln. Wer ML einsetzt, kann den Normalzustand einer Kommunikation lernen, Abweichungen erkennen und…