Machine Learning in der Cybersicherheit

Machine Learning in der Cybersicherheit
Anzeige

Beitrag teilen

Für eine dynamische und leistungsstarke Sicherheitsplattform können Tools auf Basis von maschinellem Lernen (ML) ein wesentliches Element sein.

Die Technologie lässt sich in verschiedenen Aufgabenbereichen einsetzen, zum Beispiel zur Erkennung von Malware und Netzwerkanomalien, Kategorisierung von Nutzerverhalten, Priorisierung von Schwachstellen sowie Bedrohungen, und auch zur präzisen Vorhersage zukünftiger Angriffe. Darüber hinaus kann ihr Einsatz dabei helfen, das Modellrisiko zu verbessern, die Klassifizierung von Bedrohungen zu rationalisieren – und gar unmittelbare sowie potenzielle Angriffe genau vorherzusagen. Zudem entlastet ML-basierte Automatisierung Mitarbeitende, indem sie den manuellen Aufwand minimiert. ML birgt also sehr großes Potenzial für die Cybersicherheit – doch worauf ist bei der Implementierung im Unternehmenskontext zu achten? Die Experten von Palo Alto Networks geben einen Überblick:

Anzeige

Supervised und Unsupervised Learning

Bei der Methodik des Supervised Learnings („überwachtes Lernen“) werden aufbereitete Datensätze verwendet, um dem Algorithmus zu helfen, zwischen schädlichen und unschädlichen Daten zu unterscheiden. Nach Analyse der Eingangsdaten mit vorgegebener Zielvariable kann er Prognosen erstellen und präzise Empfehlungen abgeben. Es ist die wichtigste Art von ML. So kommt Supervised Learning zum Beispiel bei der Klassifizierung von Bedrohungen zum Einsatz: Eine Lösung kann potenzielle Bedrohungen eigenständig aus den Datensätzen erkennen, wenn sie ähnliche Merkmale aufweisen wie die historischen Daten.

Beim Unsupervised Learning („unüberwachtes Lernen“) hingegen erkundet der Algorithmus eigenständig die Struktur der Daten, ohne im Voraus bekannte Zielwerte zu erhalten. Anschließend gruppiert er diese („Clustering“). So kann Unsupervised Learning den Cybersicherheitsteams einen Überblick über normales und anormales Verhalten bieten.

Anzeige

Jetzt Newsletter abonnieren

Einmal im Monat die besten News von B2B CYBER SECURITY lesen



Mit Klick auf „Anmelden“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden. Weitere Informationen finde ich in unserer Datenschutzerklärung. Nach dem Anmelden erhalten Sie zuerst eine Bestätigungsmail, damit keine anderen Personen Ihnen etwas ungewolltes bestellen können.
Aufklappen für Details zu Ihrer Einwilligung
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung. Sie können jederzeit den Newsletter wieder abbestellen. Einen entsprechenden Link finden Sie im Newsletter. Nach einer Abmeldung werden Ihre Daten in kürzester Zeit gelöscht. Eine Wiederherstellung ist nicht möglich. Falls Sie den Newsletter erneut haben möchten, ordern sie diesen einfach neu. Verfahren Sie auch so, wenn Sie eine andere E-Mail-Adresse für Ihren Newsletter nutzen möchten. Wenn Sie den auf der Website angebotenen Newsletter beziehen möchten, benötigen wir von Ihnen eine E-Mail-Adresse sowie Informationen, welche uns die Überprüfung gestatten, dass Sie der Inhaber der angegebenen E-Mail-Adresse und mit dem Empfang des Newsletters einverstanden sind. Weitere Daten werden nicht bzw. nur auf freiwilliger Basis erhoben. Für die Abwicklung der Newsletter nutzen wir Newsletterdiensteanbieter, die nachfolgend beschrieben werden.

CleverReach

Diese Website nutzt CleverReach für den Versand von Newslettern. Anbieter ist die CleverReach GmbH & Co. KG, Schafjückenweg 2, 26180 Rastede, Deutschland (nachfolgend „CleverReach“). CleverReach ist ein Dienst, mit dem der Newsletterversand organisiert und analysiert werden kann. Die von Ihnen zwecks Newsletterbezug eingegebenen Daten (z. B. E-Mail-Adresse) werden auf den Servern von CleverReach in Deutschland bzw. Irland gespeichert. Unsere mit CleverReach versandten Newsletter ermöglichen uns die Analyse des Verhaltens der Newsletterempfänger. Hierbei kann u. a. analysiert werden, wie viele Empfänger die Newsletternachricht geöffnet haben und wie oft welcher Link im Newsletter angeklickt wurde. Mit Hilfe des sogenannten Conversion-Trackings kann außerdem analysiert werden, ob nach Anklicken des Links im Newsletter eine vorab definierte Aktion (z. B. Kauf eines Produkts auf dieser Website) erfolgt ist. Weitere Informationen zur Datenanalyse durch CleverReach-Newsletter erhalten Sie unter: https://www.cleverreach.com/de/funktionen/reporting-und-tracking/. Die Datenverarbeitung erfolgt auf Grundlage Ihrer Einwilligung (Art. 6 Abs. 1 lit. a DSGVO). Sie können diese Einwilligung jederzeit widerrufen, indem Sie den Newsletter abbestellen. Die Rechtmäßigkeit der bereits erfolgten Datenverarbeitungsvorgänge bleibt vom Widerruf unberührt. Wenn Sie keine Analyse durch CleverReach wollen, müssen Sie den Newsletter abbestellen. Hierfür stellen wir in jeder Newsletternachricht einen entsprechenden Link zur Verfügung. Die von Ihnen zum Zwecke des Newsletter-Bezugs bei uns hinterlegten Daten werden von uns bis zu Ihrer Austragung aus dem Newsletter bei uns bzw. dem Newsletterdiensteanbieter gespeichert und nach der Abbestellung des Newsletters aus der Newsletterverteilerliste gelöscht. Daten, die zu anderen Zwecken bei uns gespeichert wurden, bleiben hiervon unberührt. Nach Ihrer Austragung aus der Newsletterverteilerliste wird Ihre E-Mail-Adresse bei uns bzw. dem Newsletterdiensteanbieter ggf. in einer Blacklist gespeichert, sofern dies zur Verhinderung künftiger Mailings erforderlich ist. Die Daten aus der Blacklist werden nur für diesen Zweck verwendet und nicht mit anderen Daten zusammengeführt. Dies dient sowohl Ihrem Interesse als auch unserem Interesse an der Einhaltung der gesetzlichen Vorgaben beim Versand von Newslettern (berechtigtes Interesse im Sinne des Art. 6 Abs. 1 lit. f DSGVO). Die Speicherung in der Blacklist ist zeitlich nicht befristet. Sie können der Speicherung widersprechen, sofern Ihre Interessen unser berechtigtes Interesse überwiegen. Näheres entnehmen Sie den Datenschutzbestimmungen von CleverReach unter: https://www.cleverreach.com/de/datenschutz/.

Auftragsverarbeitung

Wir haben einen Vertrag über Auftragsverarbeitung (AVV) zur Nutzung des oben genannten Dienstes geschlossen. Hierbei handelt es sich um einen datenschutzrechtlich vorgeschriebenen Vertrag, der gewährleistet, dass dieser die personenbezogenen Daten unserer Websitebesucher nur nach unseren Weisungen und unter Einhaltung der DSGVO verarbeitet.

Generative AI (GenAI) erweitert das Spektrum des maschinellen Lernens, indem es sowohl Supervised als auch Unsupervised Learning integriert. Diese Technik nutzt die Datenanalyse und Vorhersagefähigkeit des Supervised Learning, kombiniert mit der Mustererkennung und explorativen Natur des Unsupervised Learning. GenAI lässt sich vor allem in Bereichen wie Source Code Interpretation, Policy Analyse, Forensik oder Pentesting nutzen.

Daten sind der Schlüssel

Um sicherzustellen, dass ML-Algorithmen korrekt ausgeführt werden und das gewünschte Ergebnis liefern, muss eine große Menge an qualitativ hochwertigen Daten eingegeben werden. Diese Datensätze sollten die für das jeweilige Unternehmen zu erwartenden Bedrohungen repräsentieren, damit das ML-Tool die korrekten Muster und Regeln erlernen kann. Dazu sollten sie auch auf dem neuesten Stand sein und stets erneuert werden.

Daten aus verschiedenen Quellen, die aufgrund unterschiedlicher Datentypen oder Kategorisierungen nicht gut miteinander interagieren und Lücken aufweisen, sind für eine Maschine schwer zu bewerten. Damit der Algorithmus seine volle Leistungsfähigkeit entfalten kann, sollten die Daten daher immer komplett, konsistent und korrekt sein.

ML ist prädiktiv, nicht deterministisch

ML befasst sich mit Wahrscheinlichkeiten und Ergebniswahrscheinlichkeiten. Das heißt, es verwendet zur Verfügung gestellte Daten und frühere Ergebnisse, um wiederum potenzielle Resultate in der Zukunft vorherzusagen. Damit ist ML prädikativ. Obwohl die Vorhersagen nicht deterministisch sind, sind sie allerdings in der Regel sehr genau – und viel schneller verfügbar als nach einer menschlichen Analyse.

Regeln für Regression, Klassifikation, Clustering und Assoziation

Je nachdem, welche Art von Problem gelöst werden soll, gibt es verschiedene Methoden von ML wie z.B. Regression, Clustering und Assoziationsanalyse. Regression hat das Ziel, eine kontinuierliche Ausgabe oder Vorhersage zu machen. Im Bereich der Cybersicherheit lässt sie sich bei der Betrugserkennung einsetzen. Klassifikation und Clustering teilen Daten in Gruppen oder Kategorien ein, wobei Clustering speziell auf der Grundlage von Ähnlichkeiten in den Daten gruppiert. Bei der Klassifikation ordnet oder gruppiert der Algorithmus Beobachtungen in vordefinierte Kategorien, um etwa Spam von unschädlichen Daten unterscheiden zu können.

Das Lernen von Assoziationsregeln nutzt frühere Erfahrungen mit Daten, um ein bestimmtes Ergebnis wesentlich schneller zu empfehlen, als ein Mensch je in der Lage wäre. Tritt etwa ein Vorfall auf einer Website auf, lassen sich so automatisiert Lösungen bieten.

ML und seine Grenzen

ML-Algorithmen sind äußerst effizient bei der Mustererkennung und der Vorhersageerstellung. Allerdings erfordern sie auch viele Ressourcen und sind noch oft recht fehleranfällig, da die Datensätze in ihrem Umfang begrenzt sind – somit können auch ML-Tools an ihre Grenzen stoßen.

Zusammenarbeit von Mensch und Maschine

Um die Leistung von ML-basierten Algorithmen in der Cybersicherheit zu steigern, müssen Mensch und Maschine zusammenarbeiten. ML-Algorithmen können zwar die Datenanalyse durchführen, jedoch ersetzt dies nicht die Pflicht von Cybersicherheits-Teams, über die neuesten technologischen Durchbrüche und Veränderungen in der Bedrohungslandschaft auf dem Laufenden zu bleiben.

Nahtlose Integration und Interaktion mit anderen Tools

Neue ML-Techniken, die im Cybersicherheitsumfeld Anwendung finden, können sich erst dann entfalten, wenn diese in Prozess- und Technologie-Landschaft nahtlos integriert sind. Es bringt z.B. recht wenig Mehrwert, Gefahren noch schneller zu identifizieren, wenn diese erst nach Tagen geblockt oder behoben werden können. Daher ist es entscheidend, bei ML nicht dem Hype zu verfallen, sondern zu prüfen, in welchen Bereichen der Einsatz von ML-basierten Lösungen tatsächlich sinnvoll ist.

Mehr bei PaloAltoNetworks.com

 


Über Palo Alto Networks

Palo Alto Networks, der weltweit führende Anbieter von Cybersicherheitslösungen, gestaltet die cloudbasierte Zukunft mit Technologien, die die Arbeitsweise von Menschen und Unternehmen verändern. Unsere Mission ist es, der bevorzugte Cybersicherheitspartner zu sein und unsere digitale Lebensweise zu schützen. Wir helfen Ihnen, die größten Sicherheitsherausforderungen der Welt mit kontinuierlichen Innovationen anzugehen, die die neuesten Durchbrüche in den Bereichen künstliche Intelligenz, Analytik, Automatisierung und Orchestrierung nutzen. Durch die Bereitstellung einer integrierten Plattform und die Stärkung eines wachsenden Ökosystems von Partnern sind wir führend beim Schutz von Zehntausenden von Unternehmen über Clouds, Netzwerke und mobile Geräte hinweg. Unsere Vision ist eine Welt, in der jeder Tag sicherer ist als der vorherige.


 

Passende Artikel zum Thema

DORA: So bewältigen Finanzunternehmen die Herauforderungen

Der Digital Operational Resilience Act (DORA) wurde verabschiedet, um den zunehmenden Cyberbedrohungen in in der Finanzbranche zu begegnen und die ➡ Weiterlesen

NIS-2 ist gescheitert – Abwarten ist trotzdem keine Option

Während andere EU-Staaten längst klare Vorgaben für NIS-2 geschaffen haben, ist die Umsetzung in Deutschland vorerst gescheitert. Das bedeutet: Teile ➡ Weiterlesen

Richtlinien-Compliance: Risikobewertung ist der erste Schritt

Die Umsetzung nationaler und europäischer Richtlinien zur Cybersicherheit kann für Unternehmen belastend sein und dadurch die Compliance beeinträchtigen. Dabei soll ➡ Weiterlesen

KI-Funktionen zur Vorhersage und Vorbeugung von IT-Problemen

Der Hersteller einer KI-gestützte Observability-Plattform kündigte eine Erweiterung seiner KI-Engine Davis AI an, die Unternehmen über reaktive AIOps hinaus zu ➡ Weiterlesen

SaaS-Verletzungen haben sich verdreifacht

Im letzten Jahr waren sämtliche Branchen von SaaS-Verletzungen betroffen. Insgesamt hat sich die Zahl der Angriffe um 300 Prozent erhöht. ➡ Weiterlesen

Bedrohungsdaten als Feed: Vorsprung für die Cyber-Abwehr

[wpcode id="17192"] Nur wenn die Security-Lösung mit aktuellen Bedrohungsdaten gefüttert wird, hat die Cyberabwehr einen wichtigen Vorsprung. Viele Unternehmen nutzen ➡ Weiterlesen

Brand Phishing: Microsoft an erster Stelle

Der Trend zu Brand Phishing, um persönliche Zugangsdaten und Informationen zu stehlen, ist ungebrochen. Im letzten Quartal 2024 kamen die ➡ Weiterlesen

Home Office Sicherheit: Was Ihr Unternehmen wissen sollte

Unternehmen & Home Office: Ohne die schützenden Mauern der Firmen-IT werden Mitarbeiter schnell zur ersten Verteidigungslinie gegen Cyberangriffe – eine ➡ Weiterlesen